R/clustering.R
fuzzy_term_clustering.Rd
Heuristic Fuzzy Multiple-linkage Partitioning of Enriched Terms
fuzzy_term_clustering(
kappa_mat,
enrichment_res,
kappa_threshold = 0.35,
use_description = FALSE
)
matrix of kappa statistics (output of create_kappa_matrix
)
data frame of pathfindR enrichment results. Must-have
columns are 'Term_Description' (if use_description = TRUE
) or 'ID'
(if use_description = FALSE
), 'Down_regulated', and 'Up_regulated'.
If use_active_snw_genes = TRUE
, 'non_Signif_Snw_Genes' must also be
provided.
threshold for kappa statistics, defining strong relation (default = 0.35)
Boolean argument to indicate whether term descriptions
(in the 'Term_Description' column) should be used. (default = FALSE
)
a boolean matrix of cluster assignments. Each row corresponds to an enriched term, each column corresponds to a cluster.
The fuzzy clustering algorithm was implemented based on: Huang DW, Sherman BT, Tan Q, et al. The DAVID Gene Functional Classification Tool: a novel biological module-centric algorithm to functionally analyze large gene lists. Genome Biol. 2007;8(9):R183.
if (FALSE) { # \dontrun{
fuzzy_term_clustering(kappa_mat, enrichment_res)
fuzzy_term_clustering(kappa_mat, enrichment_res, kappa_threshold = 0.45)
} # }